Precieton Workshop

Overview of the Rectangular Supercritical Wing (RSW) Test Case

Boyd Perry, III

NASA Langley Research Center

April 21, 2012

Outline

- Test Case Selection Rationale
- RSW Description
 - Geometry and Construction
 - Features and Instrumentation
 - Known Deficiencies
- RSW Testing
 - Transonic Dynamics Tunnel (TDT)
 - Test Cases and Test Data
- Summary and RSW Bibliography

Overall Workshop Configuration Selection Strategy

- Aeroelastic prediction requires simulation with many independent variables spanning multiple disciplines
 - Must work to isolate independent variables and evaluate our ability to predict the processes defined by them
 - Coarse-grain independent variables:
 - Aerodynamics
 - Structural dynamics
 - Fluid / structural coupling
- Focus of 1st workshop: Prediction of unsteady aerodynamic pressures due to forced modal oscillations

AePW Definition of an "Excellent" Data Set

- Configuration that can be modeled without adding an unnecessary level of uncertainty to the analysis
- High-quality model definition
 - Well-documented geometry
 - Stiffness, mass, and inertia measurements
 - Structural dynamic properties:
 - Natural frequencies
 - Mode shapes
 - Generalized masses
- High-quality wind-tunnel measurements
 - Flow regime: subsonic, transonic, and supersonic
 - Extensive array of unsteady pressure measurements
 - Quantitative displacement measurements
 - Quantitative flow visualization measurements
 - Loads measurements
 - Quantitative definition of instability boundaries (LCO, flutter, divergence, buffet, etc.)

AePW-1 Case 1 Selection Rationale: Rectangular Supercritical Wing (RSW)

- Cases chosen to focus on the steady and unsteady aerodynamics - C_p
- Mach 0.825 generates transonic conditions with a terminating shock; highest Mach number with forced transition
- Steady Data: Two static angles of attack chosen
 - α = 2.0°
 Generates a moderate-strength shock with some potential for shock-separated flow; corresponding forced oscillation data exists
 - α = 4.0°
 Generates strong shock with greater potential for shock-separated flow

- Unsteady Data: Two forced oscillation frequencies chosen to evaluate the ability of methods to distinguish frequency effects
 - Non-zero mean angle of attack introduces a wing loading bias for which code-to-code comparisons can be accomplished

Outline

Test Case Selection Rationale

→ · RSW Description

- Geometry and Construction
- Features and Instrumentation
- Known Deficiencies
- RSW Testing
 - Transonic Dynamics Tunnel (TDT)
 - Test Cases and Test Data
- Summary and RSW Bibliography

RSW Geometry and Construction

Comparison of Design and Measured Coordinates

Span Station 38.932 in.

RSW Instrumentation Layout

Unsteady Pressure Transducers

- Kulites
- 4 full chords (1, 2, 3, 4)
 30.9, 58.8, 80.9, and 95.1 % span
- 29 pressure per chord
 14 upper, 14 lower, 1 leading edge
- Center section: in situ
- LE & TE sections: matched tubing

Accelerometers

- 4 along 23% chord
- 4 along 69% chord

Potentiometer

1 on pitch axis (46% chord)

- Splitter plate
 - Small size
 - ~ 4 chords x 2 chords
 - Located in the tunnel wall boundary layer –
 - 。 6" off of tunnel wall
 - Estimated TDT boundary layer thickness: 12"

- Splitter plate
 - Small size
 - ~ 4 chords x 2 chords
 - Located in the tunnel wall boundary layer –
 - 。 6" off of tunnel wall
 - Estimated TDT boundary layer thickness: 12"

- Splitter plate
 - Small size
 - ~ 4 chords x 2 chords
 - Located in the tunnel wall boundary layer –
 - off of tunnel wall
 - Estimated TDT boundary layer thickness: 12"

- Splitter plate
 - Small size
 - ~ 4 chords x 2 chords
 - Located in the tunnel wall boundary layer –
 - off of tunnel wall
 - Estimated TDT boundary layer thickness: 12"
- Tunnel wall slots open
 - Open slots have been demonstrated to have a significant effect on steady lift curve slope

- Splitter plate
 - Small size
 - ~ 4 chords x 2 chords
 - Located in the tunnel wall boundary layer –
 - off of tunnel wall
 - Estimated TDT boundary layer thickness: 12"
- Tunnel wall slots open
 - Open slots have been demonstrated to have a significant effect on steady lift curve slope

- Splitter plate
 - Small size
 - ~ 4 chords x 2 chords
 - Located in the tunnel wall boundary layer –
 - off of tunnel wall
 - Estimated TDT boundary layer thickness: 12"
- Tunnel wall slots open
 - Open slots have been demonstrated to have a significant effect on steady lift curve slope
 - $_{\circ}$ C_{L $_{\alpha}$} slots open \approx 0.9 C_{L $_{\alpha}$} slots closed

- Splitter plate
 - Small size
 - ~ 4 chords x 2 chords
 - Located in the tunnel wall boundary layer –
 - off of tunnel wall
 - Estimated TDT boundary layer thickness: 12"
- Tunnel wall slots open
 - Open slots have been demonstrated to have a significant effect on steady lift curve slope
 - $_{\circ}$ C_{L $_{\alpha}$} slots open ≈ 0.9 C_{L $_{\alpha}$} slots closed

- Splitter plate
 - Small size
 - ~ 4 chords x 2 chords
 - Located in the tunnel wall boundary layer –
 - off of tunnel wall
 - Estimated TDT boundary layer thickness: 12"
- Tunnel wall slots open
 - Open slots have been demonstrated to have a significant effect on steady lift curve slope
 - $_{\circ}$ C_{L $_{\alpha}$} slots open ≈ 0.9 C_{L $_{\alpha}$} slots closed
- Bad experimental data points

$$M = 0.825$$
, $\alpha = 2^{0}$, $\eta = 0.809$

- Splitter plate
 - Small size
 - ~ 4 chords x 2 chords
 - Located in the tunnel wall boundary layer –
 - off of tunnel wall
 - Estimated TDT boundary layer thickness: 12"
- Tunnel wall slots open
 - Open slots have been demonstrated to have a significant effect on steady lift curve slope
 - $_{\circ}$ C_{L $_{\alpha}$} slots open ≈ 0.9 C_{L $_{\alpha}$} slots closed
- Bad experimental data points
 - Identified in RSW literature

- Splitter plate
 - Small size
 - ~ 4 chords x 2 chords
 - Located in the tunnel wall boundary layer –
 - off of tunnel wall
 - Estimated TDT boundary layer thickness: 12"
- Tunnel wall slots open
 - Open slots have been demonstrated to have a significant effect on steady lift curve slope
 - $_{\circ}$ C_{L $_{\alpha}$} slots open ≈ 0.9 C_{L $_{\alpha}$} slots closed
- Bad experimental data points
 - Identified in RSW literature
 - Identified by AePW RSW Team

- The upper-surface sensors at the 32% chord location are shown to have significantly reduced magnitude response for data sets that include the transition strips.
- The reduced responses are not thought to be altered due to the presence of the transition strip in the flowfield. If it were a physical alteration of the flow field due to the transition strip, there would be more significant changes in the pressure responses between the leading edge and the 32% chord location.
- For unsteady conditions, the phases of these sensors indicate that they are measuring the pressure changes still, but not at the proper response levels.
- The upper-surface sensors at the 32% chord location will not be used for comparison with computational results.

x/c

0.5

- The upper-surface sensors at the 32% chord location are shown to have significantly reduced magnitude response for data sets that include the transition strips.
- The reduced responses are not thought to be altered due to the presence of the transition strip in the flowfield. If it were a physical alteration of the flow field due to the transition strip, there would be more significant changes in the pressure responses between the leading edge and the 32% chord location.
- For unsteady conditions, the phases of these sensors indicate that they are measuring the pressure changes still, but not at the proper response levels.
- The upper-surface sensors at the 32% chord location will not be used for comparison with computational results.

M = 0.825, $\alpha = 2^{0}$, $\eta = 0.309$ $\theta = 1^{0}$, f = 10 Hz

 The upper-surface sensors at the 32% chord location will not be used for comparison with computational results.

 The upper-surface sensors at the 32% chord location will not be used for comparison with computational results.

Outline

- Test Case Selection Rationale
- RSW Description
 - Geometry and Construction
 - Features and Instrumentation
 - Known Deficiencies

→ · RSW Testing

- Transonic Dynamics Tunnel (TDT)
- Test Cases and Test Data
- Summary and RSW Bibliography

Langley Transonic Dynamics Tunnel (TDT)

- Closed-circuit, continuous-flow wind-tunnel
- Air or R-134a heavy-gas test medium
- Mach numbers up to 1.2
- Total pressures from near vacuum to 1 atmosphere
- Dynamic pressures up to 550 psf in R-134a
- Model and facility protection systems

Langley Transonic Dynamics Tunnel (TDT)

R-12 (Freon) for RSW in 1982

- Closed circuit, continuous-flow wind-tunnel
- Air or R-34a heavy-gas test medium
- Mach numbers up to 1.2
- Total pressures from near vacuum to 1 atmosphere
- Dynamic pressures up to 550 psf in R->34a
- Model and facility protection systems

RSW Test Cases

- Conditions common to all cases:
 - Mach number = 0.825
 - R-12 heavy gas test medium
 - Reynolds number = 4 million (based on chord)
- Steady Cases
 - $\alpha = 2^{\circ}$
 - $\alpha = 4^{\circ}$
 - Quantity of interest: mean C_p
- Dynamic Cases (forced oscillations)
 - $\alpha = 2^{\circ}$, $\theta = 1^{\circ}$, f = 10 Hz, k = 0.15
 - $\alpha = 2^{\circ}$, $\theta = 1^{\circ}$, f = 20 Hz, k = 0.30
 - Quantities of interest: real and imaginary of C_p/θ (magnitude and phase of C_p/θ)

RSW Test Cases

- Conditions common to all cases:
 - Mach number = 0.825
 - R-12 heavy gas test medium
 - Reynolds number = 4 million (based on chord)
- Steady Cases
 - $\alpha = 2^{\circ}$
 - $\alpha = 4^{\circ}$
 - Quantity of interest: mean C_p
- Dynamic Cases (forced oscillations)
 - $\alpha = 2^{\circ}$, $\theta = 1^{\circ}$, f = 10 Hz, k = 0.15
 - $\alpha = 2^{\circ}$, $\theta = 1^{\circ}$, f = 20 Hz, k = 0.30
 - Quantities of interest: real and imaginary of C_p/θ (magnitude and phase of C_p/θ)

Example of RSW Steady Data C_p vs. x/c

RSW Steady Data

 C_p vs. x/c

RSW Steady Data

 C_p vs. x/c

RSW Test Cases

- Conditions common to all cases:
 - Mach number = 0.825
 - R-12 heavy gas test medium
 - Reynolds number = 4 million (based on chord)
- Steady Cases
 - $\alpha = 2^{\circ}$
 - $\alpha = 4^{\circ}$
 - Quantity of interest: mean C_p
- Dynamic Cases (forced oscillations)
 - $\alpha = 2^{\circ}$, $\theta = 1^{\circ}$, f = 10 Hz, k = 0.15
 - $\alpha = 2^{\circ}$, $\theta = 1^{\circ}$, f = 20 Hz, k = 0.30
 - Quantities of interest: real and imaginary of C_p/θ (magnitude and phase of C_p/θ)

Example of RSW Unsteady Data Magnitude of FRF of $[C_p / \theta]$ vs. x/c

Mach number = 0.825 $\alpha = 2^{0}$, $\theta = 1^{0}$ f = 20 Hz, k = 0.30

February 6, 2012 J.Heeg PSW Experimental Data-Bad Data Assessment Comparison of with and without Transition Strips UnSteady Data, Zdegs AOA, 20 H2

Frequency Response Functions of Cp/⊕ Units: (1/rad)

Point 632: With Transition Strip (AcPW Data Sct) Point 474: Without Transition Strip

(Comparison Data Set)

Eta = 0.3 Point=63 4 M=0.826 Q=108.9 (Upper)
Eta = 0.588 Point=63 4 M=0.826 Q=108.9 (Upper)
Eta = 0.8 Point=63 4 M=0.826 Q=108.9 (Upper)
Eta = 0.8 Point=63 4 M=0.826 Q=108.9 (Upper)
Eta = 0.951 Point=63 4 M=0.826 Q=108.9 (Upper)
Eta = 0.951 Point=63 4 M=0.826 Q=108 (Upper)
Eta = 0.3 Point=476 M=0.825 Q=108 (Upper)
Eta = 0.588 Point=476 M=0.825 Q=108 (Upper)
Eta = 0.588 Point=476 M=0.825 Q=108 (Upper)
Eta = 0.588 Point=476 M=0.825 Q=108 (Upper)
Eta = 0.8 Point=476 M=0.825 Q=108 (Upper)
Eta = 0.8 Point=476 M=0.825 Q=108 (Upper)
Eta = 0.951 Point=476 M=0.825 Q=108 (Upper)
Eta = 0.951 Point=476 M=0.825 Q=108 (Upper)

All data for upper surface

Outline

- Test Case Selection Rationale
- RSW Description
 - Geometry and Construction
 - Features and Instrumentation
 - Known Deficiencies
- RSW Testing
 - Transonic Dynamics Tunnel (TDT)
 - Test Cases and Test Data
- → Summary and RSW Bibliography

Summary

- RSW chosen because it has the attributes of an "Excellent" data set
 - High quality model definition
 - High quality wind-tunnel measurements
- RSW data set consistent with the focus of the 1st Aeroelastic Prediction Workshop
 - Unsteady aerodynamic pressures due to forced modal (for RSW, pitch) oscillations
 - Multiple oscillation frequencies
 - Transonic flow feature to challenge codes
 - Strong shock

RSW Bibliography

- Ricketts, Rodney H.; Sandford, Maynard C.; Seidel, David A.; and Watson, Judith J.: Transonic Pressure Distributions on a Rectangular Supercritical Wing Oscillating in Pitch. Presented at the 24th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics, and Materials Conference, May 2-4, 1983, Lake Tahoe, NV, AIAA Paper No. 83-0923. (Also available as NASA TM 84616, March, 1983.)
- Ricketts, Rodney H.; Watson, Judith J.; Sandford, Maynard C.; and Seidel, David A.: Geometrical and Structural Properties of a Rectangular Supercritical Wing Oscillated in Pitch for Measurement of Unsteady Transonic Pressure Distributions. NASA TM 85673, November, 1983.
- Ricketts, Rodney H.; Sandford, Maynard C.; Seidel, Watson, Judith J.; and David A.: Subsonic and Transonic Unsteady- and Steady-Pressure Measurements on a Rectangular Supercritical Wing Oscillating in Pitch. NASA TM 85765, August, 1984.
- Bennett, Robert M.; and Walker, Charlotte E.: Computational Test Cases for a Rectangular Supercritical Wing Undergoing Pitching Oscillations. NASA TM-1999-209130, April, 1999.

Extra Charts

Boundary Layer ComparisonsAnalysis and Experiment

Review of the RSW Grid Development and Analysis Research by the AePW OC members: Story line

- Wall and splitter plate modeling investigated using <u>steady</u> analysis
 - Splitter plate models
 - None
 - · Symmetry boundary condition
 - Viscous
 - Wall models
 - Symmetry boundary condition
 - Viscous
 - Wing size
 - Geometric model size
 - Extended wing span to duplicate placement within the test section
- Experimental data utilized to assess computational results:
 - Boundary layer thickness at model location
 - Steady pressure distributions
- Resulting recommended model
 - Reduce computational domain from 100 chords ahead of wing to 40 chords ahead of wing
 - Viscous model of wall
 - No splitter plate
 - Extended wing span

Structured Grids

- Developed Using <u>RSW Geometry</u> <u>Model A</u>
- ICEM CFD: structured hexahedral grids
- Provided by Thorsten Hansen, ANSYS-Germany

- Developed Using <u>RSW Geometry</u> <u>Model D</u>, with modified wall length ahead of wing
- SolidMesh: unstructured grids with mixed and tetrahedral elements
- Provided by Marilyn Smith, Georgia Institute of Technology

Structured Grids

- Developed Using RSW Geometry Model A
- ICEM CFD: structured hexahedral grids
- Provided by Thorsten Hansen, ANSYS-Germany

- Developed Using <u>RSW Geometry</u> <u>Model D</u>, with modified wall length ahead of wing
- SolidMesh: unstructured grids with mixed and tetrahedral elements
- Provided by Marilyn Smith, Georgia Institute of Technology

- No splitter plate
- Wing span = 48 inches

Structured Grids

- Developed Using <u>RSW Geometry</u> <u>Model A</u>
- ICEM CFD: structured hexahedral grids
- Provided by Thorsten Hansen, ANSYS-Germany

- Developed Using <u>RSW Geometry</u> <u>Model D</u>, with modified wall length ahead of wing
- SolidMesh: unstructured grids with mixed and tetrahedral elements
- Provided by Marilyn Smith, Georgia Institute of Technology

- No splitter plate
- Viscous tunnel wall*
- Wing span = 55 inches

^{*} Viscous wall extends to 100 wing chords ahead of wing leading edge, intentionally disobeying the criterion specified in the gridding guidelines

Structured Grids

- Developed Using <u>RSW Geometry</u> <u>Model A</u>
- ICEM CFD: structured hexahedral grids
- Provided by Thorsten Hansen, ANSYS-Germany

- Developed Using <u>RSW Geometry</u> <u>Model D</u>, with modified wall length ahead of wing
- SolidMesh: unstructured grids with mixed and tetrahedral elements
- Provided by Marilyn Smith, Georgia Institute of Technology

- No splitter plate
- Viscous tunnel wall*
- Wing span = 55 inches

^{*} Viscous wall extends to 40 wing chords ahead of wing leading edge

MODEL GAP AND TUNNEL-SIDEWALL SLOT EFFECTS EVALUATED FOR HSR RIGID SEMISPAN MODEL IN THE TDT

Configurations Tested

Effects of Slots and Gaps on Normalized Lift-Curve Slope

Point Number = 626 Mach Number = 0.825 Alphao = 2.00, deg.

Lift Coefficient vs. Mach Number

Lift Coefficient vs. Mach Number

Honolulu Weather

Updated: Apr 16, 2012, 12:53pm

Video: Your 60 second look ahead - ITOR: CON Key to preparing Kansas -

Мар		,		ly Idy	•	•	•	A		H .	0					
		Wed 25	Ó	Partly Cloudy	80°	,02		Month		Rain: 20%	Snow					Rain
Monthly	Text Forecast	Tue 24		Mostly Sunny	81°	°07	EXPAND GRAPH			Rain: 10%						Rain
10 day	Detailed Forecast Text	Mon 23		Sunny	.08	711°				Rain: 0%	Precip / Rain					Rain
5 day		Sun 22	0	Partly Cloudy	°08	°02				Rain: 20%					П	Rain
Weekend 5		Sat 21	0	Partly Cloudy	.08	°07				Rain: 20%				ŀ	П	n Rain t Sun
		Fri 20	•	Partly Cloudy	.08	°07				Rain: 20%				ŀ	П	Rain Rain Fri Sat
Tomorrow		Thu	0	Partly Cloudy	°08	°07				Rain: 20%	wor			ŀ		Rain R
Hourly		Wed	0	Partly Cloudy	81°	°07				Rain: 20%	Chance of Precip / Rain / Snow					Rain
		Tue	•	Partly Cloudy	82°	°02				Rain: 10%	of Precip					Rain
Today		Today Apr 16	0	Partly Cloudy	82°F High	70°		◆ 5-Day	Chance of:	Rain: 20%	Chance	%06	%09	30%	%0	